miércoles, 24 de octubre de 2018

Estimadores

En estadística, un estimador es estadístico(esto es, una función de la muestra) usado para estimar un parámetro desconocido de la población. Por ejemplo, si se desea conocer el precio medio de un artículo (el parámetro desconocido) se recogerán observaciones del precio de dicho artículo en diversos establecimientos (la muestra) y la media aritmética de las observaciones puede utilizarse como estimador del precio medio.

un
Para cada parámetro pueden existir varios estimadores diferentes. En general, escogeremos el estimador que posea mejores propiedades que los restantes, como insesgadezeficienciaconvergencia y robustez(consistencia).

miércoles, 3 de octubre de 2018

Distribución de Varianzas

DISTRIBUCION JI-CUADRADA (X2)

En realidad la distribución ji-cuadrada es la distribución muestral de s2. O sea que si se extraen todas las muestras posibles de una población normal y a cada muestr
a se le calcula su varianza, se obtendrá la distribución muestral de varianzas.

Para estimar la varianza poblacional o la desviación estándar, se necesita conocer el estadístico X2. Si se elige una muestra de tamaño n de una población normal con varianza , el estadístico:
tiene una distribución muestral que es una distribución ji-cuadrada con gl=n-1 grados de libertad y se denota X2 (X es la minúscula de la letra griega ji). El estadístico ji-cuadrada esta dado por:
donde n es el tamaño de la muestra, s2 la varianza muestral y  la varianza de la población de donde se extrajo la muestra. El estadístico ji-cuadrada también se puede dar con la siguiente expresión: