miércoles, 26 de septiembre de 2018
jueves, 20 de septiembre de 2018
Prueba T student
En las unidades anteriores se manejó el uso de la distribución z, la cual se podía utilizar siempre y cuando los tamaños de las muestras fueran mayores o iguales a 30 ó en muestras más pequeñas si la distribución o las distribuciones de donde proviene la muestra o las muestras son normales.
En esta unidad se podrán utilizar muestras pequeñas siempre y cuando la distribución de donde proviene la muestra tenga un comportamiento normal. Esta es una condición para utilizar las tres distribuciones que se manejarán en esta unidad; t de student, X2 ji-cuadrada y Fisher.
A la teoría de pequeñas muestras también se le llama teoría exacta del muestreo, ya que también la podemos utilizar con muestras aleatorias de tamaño grande.
En esta unidad se verá un nuevo concepto necesario para poder utilizar a las tres distribuciones mencionadas. Este concepto es "grados de libertad".
DISTRIBUCIÓN "t DE STUDENT"
Supóngase que se toma una muestra de una población normal con media
y varianza
. Si
es el promedio de las n observaciones que contiene la muestra aleatoria, entonces la distribución
es una distribución normal estándar. Supóngase que la varianza de la población
2 es desconocida. ¿Qué sucede con la distribución de esta estadística si se reemplaza
por s? La distribución t proporciona la respuesta a esta pregunta.
La media y la varianza de la distribución t son
= 0 y
para
>2, respectivamente.
La siguiente figura presenta la gráfica de varias distribuciones t. La apariencia general de la distribución t es similar a la de la distribución normal estándar: ambas son simétricas y unimodales, y el valor máximo de la ordenada se alcanza en la media
= 0. Sin embargo, la distribución t tiene colas más amplias que la normal; esto es, la probabilidad de las colas es mayor que en la distribución normal. A medida que el número de grados de libertad tiende a infinito, la forma límite de la distribución t es la distribución normal estándar.
Propiedades de las distribuciones t
- Cada curva t tiene forma de campana con centro en 0.
- Cada curva t, está más dispersa que la curva normal estándar z.
- A medida que
aumenta, la dispersión de la curva t correspondiente disminuye.
- A medida que
, la secuencia de curvas t se aproxima a la curva normal estándar, por lo que la curva z recibe a veces el nombre de curva t con gl =
La distribución de la variable aleatoria t está dada por:
Esta se conoce como la distribución t con
grados de libertad.
Sean X1, X2, . . . , Xn variables aleatorias independientes que son todas normales con media
y desviación estándar
. Entonces la variable aleatoria
tiene una distribución t con
= n-1 grados de libertad.
La distribución de probabilidad de t se publicó por primera vez en 1908 en un artículo de W. S. Gosset. En esa época, Gosset era empleado de una cervecería irlandesa que desaprobaba la publicación de investigaciones de sus empleados. Para evadir esta prohibición, publicó su trabajo en secreto bajo el nombre de "Student". En consecuencia, la distribución t normalmente se llama distribución t de Student, o simplemente distribución t. Para derivar la ecuación de esta distribución, Gosset supone que las muestras se seleccionan de una población normal. Aunque esto parecería una suposición muy restrictiva, se puede mostrar que las poblaciones no normales que poseen distribuciones en forma casi de campana aún proporcionan valores de t que se aproximan muy de cerca a la distribución t.
La distribución t difiere de la de Z en que la varianza de t depende del tamaño de la muestra y siempre es mayor a uno. Unicamente cuando el tamaño de la muestra tiende a infinito las dos distribuciones serán las mismas.
Se acostumbra representar con
el valor t por arriba del cual se encuentra un área igual a
. Como la distribución t es simétrica alrededor de una media de cero, tenemos
; es decir, el valor t que deja un área de
a la derecha y por tanto un área de
a la izquierda, es igual al valor t negativo que deja un área de
en la cola derecha de la distribución. Esto es, t0.95 = -t0.05, t0.99=-t0.01, etc.
Para encontrar los valores de t se utilizará la tabla de valores críticos de la distribución t del libro Probabilidad y Estadística para Ingenieros de los autores Walpole, Myers y Myers.
Ejemplo:
El valor t con
= 14 grados de libertad que deja un área de 0.025 a la izquierda, y por tanto un área de 0.975 a la derecha, es
t0.975=-t0.025 = -2.145
Si se observa la tabla, el área sombreada de la curva es de la cola derecha, es por esto que se tiene que hacer la resta de
jueves, 13 de septiembre de 2018
Distribución Muestral de proporcion
Existen ocasiones en las
cuales no estamos interesados en la media de la muestra, sino que queremos investigar la proporción de artículos defectuosos o la proporción de alumnos reprobados en la muestra. La distribución muestral de proporciones es la adecuada para dar respuesta a estas situaciones. Esta distribución se genera de igual manera que la distribución muestral de medias, a excepción de que al extraer las muestras de la población se calcula el estadístico proporción (p=x/n en donde "x" es el número de éxitos u observaciones de interés y "n" el tamaño de la muestra) en lugar del estadísitico media.
Generación de la Distribución Muestral de Proporciones Suponga que se cuenta con un lote de 12 piezas, el cual tiene 4 artículos defectuosos. Se van a seleccionar 5 artículos al azar de ese lote sin reemplazo. Genere la distribución muestral de proporciones para el número de piezas defectuosas.
Como se puede observar en este ejercicio la Proporción de artículos defectuosos de esta población es 4/12=1/3. Por lo que podemos decir que el 33% de las piezas de este lote están defectuosas.
El número posible de muestras de tamaño 5 a extraer de una población de 12 elementos es 12C5=792, las cuales se pueden desglosar de la siguiente manera:
Para calcular la media de la distribución muestral de proporciones se tendría que hacer la sumatoria de la frecuencia por el valor de la proporción muestral y dividirla entre el número total de muestras. Esto es:

Como podemos observar la media de la distribución muestral de proporciones es igual a la Proporción de la población.
p = P
También se puede calcular la desviación estándar de la distribución muestral de proporciones:
La varianza de la distribución binomial es
2= npq, por lo que la varianza de la distribución muestral de proporciones es
2p =(Pq)/n. Si se sustituten los valores en esta fórmula tenemos que:
, este valor no coincide con el de 0.1681, ya que nos falta agregar el factor de corrección para una población finita y un muestreo sin reemplazo:
La fórmula que se utilizará para el cálculo de probabilidad en una distribución muestral de proporciones está basada en la aproximación de la distribución normal a la binomial . Esta fórmula nos servirá para calcular la probabilidad del comportamiento de la proporción en la muestra.
cuales no estamos interesados en la media de la muestra, sino que queremos investigar la proporción de artículos defectuosos o la proporción de alumnos reprobados en la muestra. La distribución muestral de proporciones es la adecuada para dar respuesta a estas situaciones. Esta distribución se genera de igual manera que la distribución muestral de medias, a excepción de que al extraer las muestras de la población se calcula el estadístico proporción (p=x/n en donde "x" es el número de éxitos u observaciones de interés y "n" el tamaño de la muestra) en lugar del estadísitico media.
Una población binomial está estrechamente relacionada con la distribución muestral de proporciones; una población binomial es una colección de éxitos y fracasos, mientras que una distribución muestral de proporciones contiene las posibilidades o proporciones de todos los números posibles de éxitos en un experimento binomial, y como consecuencia de esta relación, las afirmaciones probabilísticas referentes a la proporción muestral pueden evaluarse usando la aproximación normal a la binomial, siempre que np
5 y
n(1-p)
5. Cualquier evento se puede convertir en una proporción si se divide el número obtenido entre el número de intentos.
n(1-p)
Como se puede observar en este ejercicio la Proporción de artículos defectuosos de esta población es 4/12=1/3. Por lo que podemos decir que el 33% de las piezas de este lote están defectuosas.
El número posible de muestras de tamaño 5 a extraer de una población de 12 elementos es 12C5=792, las cuales se pueden desglosar de la siguiente manera:
Artículos Buenos
| Artículos Malos |
Proporción de artículos defectuoso
|
Número de maneras en las que se puede obtener la muestra
| |
1
|
4
|
4/5=0.8
|
8C1*4C4=8
| |
2
|
3
|
3/5=0.6
|
8C2*4C3=112
| |
3
|
2
|
2/5=0.4
|
8C3*4C2=336
| |
4
|
1
|
1/5=0.2
|
8C4*4C1=280
| |
5
|
0
|
0/5=0
|
8C5*4C0=56
| |
| Total |
792
| |||
Como podemos observar la media de la distribución muestral de proporciones es igual a la Proporción de la población.
A esta fórmula se le puede agregar el factor de corrección de
si se cumple con las condiciones necesarias.
Suscribirse a:
Comentarios (Atom)





